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The kinetics of formation of nuclei of a new phase was investigated using the 
Ginzburg--Landau type equation for the order parameter. A distribution of the order 
parameter for the nuclei of different sizes was obtained for arbitrary values of 
the degree of metastability. 

i. Formation of nuclei of a new phase is usually described by a phenomenological theory 
[I, 2] in which the conditions of a phase transition are assumed to be satisfied, and the 
properties of nuclei of a new phase are postulated. Within this framework, the concentra- 
tion of the solution necessary for the phase transition, as well as the surface tension, 
cannot b~ calculated. 

On the other hand, phase transformations are often described using the field of the 
order parameter [3, 4]. This theory is based on the Landau expansion of the free energy 
F in the order parameter ~(r, t) near the critical point of the phase transition [3, 5], 
i.e., 

F = Fo - -  J" (;k~ 2 + B~ 3 - - / ~  + n (V~) z) dr. ( 1 ) 

The relaxation of the field of the order parameter ~(r, t) is given by the following equa- 
tion [3, 4]: 

6F I~] 
6(r, t ) = - - ' i '  ~ ,  ( 2 )  8~ 

where 6F[~]/6~ is the, variational derivative. The advantage of this approach is that the 
kinetics of formation of nuclei of a new phase can he described without introducing addi- 
tional parameters (except the coefficients in Eqs. (i) and (2).) It should be noted that 
the nuclei, and their shape, appear in the inhomogeneous solutions of Eqs. (I) and (2), 
without any additional assumptions. 

Recently, phase transitions have often been considered as a development of instability 
in a system of interacting particles in solution [6]. In such adescription, th~rder 
parameter ~(r, t) is the amplitude of the unstable mode, which corresponds to the particle 
concentration in the new phase. Separation of the amplitude of the unstable mode leads 
to an equation for the order parameter of the Ginzburg-Landau type: 

which is formally equivalent to the equation for the order parameter obtained from Eqs. 
(i) and (2). Coefficients X, ~, r~, ~ in Eq. (3) can be related to the parameters of 
kinetic equations which describe the behavior of the particles in solution [6]. 

This approach has been applied in [7, 8] to the system of Point defects in irradiated 
metals. Long range attraction between the defects leads to instability of the uniform dis- 
tribution of defects, and to formation of defect clusters. 

It should be noted that the description of the phase transformations using the field 
of the order parameter agrees well with general energy considerations. Analysis of Eq. 
(I) for F[~] shows that a new energy minimum appears in the system (Fig. i) as it approaches 
the critical point. Therefore, the phase transformation is a transition into a state with 
the energetically more advantageous, finite order parameter: 
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F i g .  1. F ree  e n e r g y  F as a f u n c t i o n  o f  t h e  
homogeneous order parameter for different 
values of ~ < 0. 
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Fig. 2. The field of the order parameter ~c(p) for the critical size nuclei 
for different values of the degree of metastability: i) h = O.I; 2) 0.15; 
3) 0.35; 4) 0.5; 5) 0.75; 6) 1.0. 

Fig. 3. Dependence of the siz~of the critical nucleus a c (O(p = a c) = O) 
on the degree of metastability h. 

The purpose of this study is to investigate the kinetics of growth and dissolutio~ 
of nuclei during phase transitions of the first order by directly solving the Ginzburg- 
Landau equation (3) for the order parameter. 

2. It is convenient to introduce a new dimensionless function ~ and new variables 
p, T so that Eq. (3) becomes 

r ~) = A~ + 2 r  V ) + h ( ~ +  1), (4)  

where h = 4(1 - ~/~c); h c = -2 ~2/9y; p = r/x; X = V~0; �9 = 8t/F$~; $0 = 2~/3r; ~ := 
25/$0 - 1 .  

It should be stressed that the resulting equation (4) for the order parameter is uni- 
versal in the sense that a variety of conditions of phase transitions in different mat~rials 
is described by a single parameter h which is the degree of metastability of the syst~1. 
Equatid~ (4) differs from the equation for the order parameter investigated earlier for 
h << I :[4]. The latter equation was derived for a model system in external field and under- 
going a second-order phase transition. Formally, this difference leads to an additional 
term h~ in Eq. (4). 

It has been shown earlier that, for h > 0, nuclei of arbitrary shape quickly attain 
a spherical shape [4, 9]. Therefore, in the following we consider only that part of the 
space of initial parames which lead to the values of the degree of metastability h > 
0. We first seek the solution of Eq. (4) which corresponds to the nuclei of critical size. 
By definition, the critical nucleus does not grow or dissolve and corresponds, therefore, 
to the stationary inhomogeneous solution of the equation for the order parameter. The 
problem is thus reduced to the solution of the stationary equation for the order parameter 
(4), i.e., the ordinary differential equation of the second order. We must also specify 
the boundary conditions. At large distances from the nucleus, the order parameter corres- 
ponds to the old phase ~(r + ~) = 0, ~(p + ~) = -i and inside the nucleus to the new phase 
~(r = 0) = 2~/3~, ~(p = 0) = ~H ~ (i + I~)/2. Due to nonlinearity of Eq. (4), for 
arbitrary values of h the solutions have only been found numerically. The results of 
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Fig. h. Relaxation of the field of the 
order parameter for h = 0.I and ~0 = 
0.99ac: i) �9 = 0; 2) 2; 3) 260; 4) 
330; 5) 410; 6) 440; 7) 456; 8) 460. 
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Fig. 5. Relaxation of the field of the order parameter 
for h = i: a) a 0 = 0.66ac; i) T = 0.01; 2) 0,15; 3) 
0.48; 4) 0.93; b) a0 = 1.05~c; 5) �9 = 10.3; 6) 19.1; 7) 
26.7. 

calculations are shown in Figs. 2 and 3. Up to the value h = 0.2, the critical nuclei are 
structures with a very thin transition layer (the layer width is much smaller than the 
nucleus size.) Distributions of the order parameter of this type will be called nucleus- 
like provided they differ from the critical nucleus only in the general displacement of 
the transition layer. In this region (h < 0.2), one can find an analytic function which 
describes well the field of the order parameter for the critical nucleus (dashed curves 
in Figs. 2 and 3), i.e., 

~ c ( ~ f h ( a ~ - - ~ ,  h ~ l .  (5) 

Expression (5) was obtained taking into account that 9 = • is the exact solutionS,of the 
homogeneous equation for the order parameter for h = 0. 

For nucleus-like solutions (h < 0.2), for which the nucleus size can be determined 
uniquely from (~(p = a) = 0), the dependence of the critical size of nuclei on the degree 
of metastability (Fig. 3) can be approximated by a function a c = ~/h(a = 1,3~1.4). It 
should be noted that an analogous functional dependence of the critical size on super- 
saturation (for A << i) can be obtained from the phenomenological theory. Indeed, assum- 
ing that the new phse corresponds to lower energy and that the formed nuclei have a bound- 
ary, it is easy to see [i] that only the nuclei with sizes greater than 

a~= I/I~(I+A)(A--------- c--COco )' (6) 

where the dimensional parameter is 2ov'/T, will grow. 

With increasing valuesof the degree of metastability, the transition layer (Fig. 2) 
becomes diffuse, and for values h > 0.5, the critical nucleus has no sharply defined bound- 
ary. For these values of h, the analytical approximation (5) still describes the behavior 
of solution correctly, but gives incorrect value for the order parameter inside the nucleus. 
For large values of h, the determination of the size of critical nuclei becomes difficult; 
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in this case the width of the transition layer is comparable to the nucleus size. If we 
continue to use as the critical size a c the value defined for h << i, i.e., ac: ~(p = 
a c) = 0, we obtain the dependence of the critical size a c on h, which, for all values 
of h, can be approximated by a function 

a~ = ~/In (1 + h ) .  ( 7 )  

Similarity between the dependence of the critical size on the supersaturation A and 
the degree of metastability h, obtained using different approaches, is apparently related 
to the identical role of these parameters. Both h and & determine the critical size of 
nuclei of the new phase, and the values h = 0 and & = 0 correspond to the critical point. 
It also follows from Eqs. (6) and (7) that the characteristic length scale in the phez~omeno- 
logical theory can be expressed in terms of the corresponding microscopic parameters 

2~v'lT,'.-'~X. (8) 
3. Behavior of the different size nuclei of the new phase (see Figs. 4 and 5) w~s 

investigated by solving the spherically-symmetric equation for the order parameter (4] 
numerically. The initial distribution was taken to be a step function of size a 0 and the 
ampplitude of the new phase ~(p, T = 0) = (~H + l)q(a0-p) -I, where ~ is the step function. 
For small values of the degree of metastability (h < 0.2) and large initial sizes (a 0 >> 
i), the initial distribution becomes nucleus-like (see fig. 4) on a very short time scale 
(much shorter than the characteristic times of growth or dissolutionJ) Analysis of the 
numerical solution of dissolution of subcritical nuclei for small values of h has sho~n 
that the dissolution takes place in two stages. The displacement of the nucleus boundary 
up to the size of the order of the width of the transition layer P0, with a constant value 
of the order parameter inside the nucleus, takes place in the first stage:. After that, 
during the second stage, the characteristic size of the inhomogeneity is almost constant 
but the value of the order parameter inside the nucleus decreases. 

Thus, during the first stage, dissolution of the new phase occurs only at the nucleus 
boundary, while during the second stage dissolution occurs in the whole nucleus, i.e., the 
concentration of the new phase inside the nucleus decreases. 

Dissolution and growth of large nuclei can be described by a simple relaxation eqaation 
which takes into account the nucleus-like nature of the solution up to the values a % ~0. 
Indeed, assuming that the nucleus relaxation is limited to the displacement of its bouadary, 
we seek the solution of the nonstationary equation for the order parameter in the form 

~ (~,  p) = ~o (a (~  - -  p). ( 9 )  

Substitution of Eq. (9) into the equation for the order parameter (4) leads to a 'mll 
known [14] equation for the nonconserved order parameter 

=!__2__ (lO) 

The values of the critical size a c are shown in Fig. 3. It should be noted that the results 
for ac differ from those obtained in [4] (shown by a dashed curve in Fig. 3). It follows 
from Eq. (10) that the subcritical size nuclei dissolve and supercritical size nuclei gzow. 
The growth (or dissolution) of the new phase takes place in the transition layer of the 
nucleus. 

The nuclei of size a ~ a c are the slowest to dissolve. At this stage of dissolution, 
the dependence of the nucleus size on time is accurately described by Eq. (10). For h << 
i, the region of size a ~ P0 makes only a small contribution to the lifetime of a larg~ 
nucleus. Taking this into account, the lifetime of a nucleus (a c ~ a >> i) can be written 
explicitly 

T O = -~ In ac (ii) 
a e - - a  o 

Expression (ii) for the lifetime of a large nucleus was obtained by integrating Eq. (1O)i 

An interesting case arises when the degree of metastability is large. In this case, 
for nuclei of size a ~ a c (as well as for small nuclei for h << i), the width of the transi- 
tion layer between the new and old phases is comparable to the nucleus size. It can be 
seen in Fig. 5 that only the second stage of dissolution of nuclei takes place, i.e., the 
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order parameter (or the concentration of the new phase) decreases simultaneously throughout 
the nucleus volume. 

Just as for small values of h, the growth of nuclei for large values of h takes place 
by formation of the new phase in the transition layer of the nucleus (see Fig. 5). However, 
in the latter case, the nuclei have wider transition layers. For large values of h, it 
can be shown that the growth of nuclei with sizes a >> pQ is given by Eq. (I0). 

It should be stressed that with increasing degree of metastability h, the width of 
the transition layer between the old and new phases in the nucleus increases. As a result, 
for large values of the degree of metastability, there is no sharp separation between the 
volume and surface. This separation is used in the phenomenological theory to obtain the 
equation (6) for the critical size of the nucleus. 

The advantage of the approach to describe the formation of the new phase which is used 
here is that all the characteristic quantities can be expressed in terms of the coefficients 
of the equation for the order parameter, which, in turn, can be expressed in terms of the 
microscopic parameters of solution [7, 8]. For example, the microscopic approach to phase 
transitions in molybdenum bombarded with helium ions He + gives X = i0 ~, in good agreement 
with an estimate of this quantity:obtained using the phenomenological parameters (8). It 
should be noted that the nuclei of the newphase, and their shape, appear in the solution 
of the equation for theorder parameter, and the growth and dissolution of the nuclei can 
be studied without assuming special conditions [i, 2] at the nucleus boundary. 

NOTATION 

~(r, t), field of the order parameter; (~(p, ~), dimensionless field); r, position 
vector (p is the dimensionless position vector); X, characteristic length for scaling r; 
t, time and �9 is the dimensionless time; F[~], free energy of the system undergoing a phase 
transition; F0, free energy of the system far from the critical point; k, B, F, ~, coef- 
ficients in the Landau expansion [i]; ~, kinetic coefficient which is independent of ~; 
X, ~, r-, ~, coefficients in the equation for the order parameter, obtained from the kinetic 
equations using the approach developed in [6-9]; a.c, critical nucleus size; =, a numerical 
factor; o, surface tension; v', molecular volume of the new phase; T, temperature of the 
medium; A, supersaturation; c, real concentration of solution; co, concentration at the 
critical point; a(~), time-dependent nucleus size; and ~c(ac-P), solution of the stationary 
equation for theorder parameter [4]. 
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